skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Roosta, Fred"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We consider variants of a recently developed Newton-CG algorithm for nonconvex problems (Royer, C. W. & Wright, S. J. (2018) Complexity analysis of second-order line-search algorithms for smooth nonconvex optimization. SIAM J. Optim., 28, 1448–1477) in which inexact estimates of the gradient and the Hessian information are used for various steps. Under certain conditions on the inexactness measures, we derive iteration complexity bounds for achieving $$\epsilon $$-approximate second-order optimality that match best-known lower bounds. Our inexactness condition on the gradient is adaptive, allowing for crude accuracy in regions with large gradients. We describe two variants of our approach, one in which the step size along the computed search direction is chosen adaptively, and another in which the step size is pre-defined. To obtain second-order optimality, our algorithms will make use of a negative curvature direction on some steps. These directions can be obtained, with high probability, using the randomized Lanczos algorithm. In this sense, all of our results hold with high probability over the run of the algorithm. We evaluate the performance of our proposed algorithms empirically on several machine learning models. Our approach is a first attempt to introduce inexact Hessian and/or gradient information into the Newton-CG algorithm of Royer & Wright (2018, Complexity analysis of second-order line-search algorithms for smooth nonconvex optimization. SIAM J. Optim., 28, 1448–1477). 
    more » « less